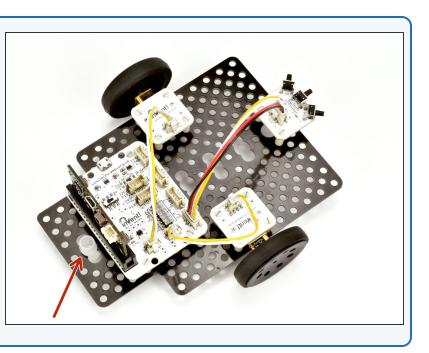
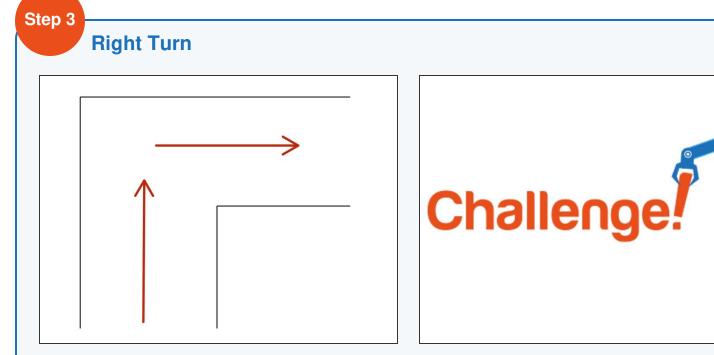

C - Underground Exploration

You've discovered an underground system of tunnels under the planet surface, but they are too dangerous to explore! Let's get our robot to explore instead.

INTRODUCTION

You've discovered an underground system of tunnels under the planet surface, but they are too dangerous to explore! Let's get our robot to explore instead.

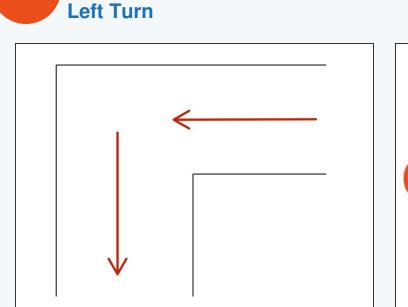

- The maze in the picture.
 For now, make a small section of maze like the
- second picture just a simple right turn.
 You can use books, cardboard and tape or anything
- else sensible you can think of! Make sure the walls are taller than your robot.


The walls must be **at least 25cm apart** so your robot has room to turn - this is <u>very important!</u>

Setup the Robot

Step 2

- Setup your robot like the picture make sure everything is in exactly the right place or your robot won't balance properly.
- The left motor should be in **M1**, the right motor in **M2**, and the switch in **P0**.
- The **trackball** goes at the back to keep the robot stable.

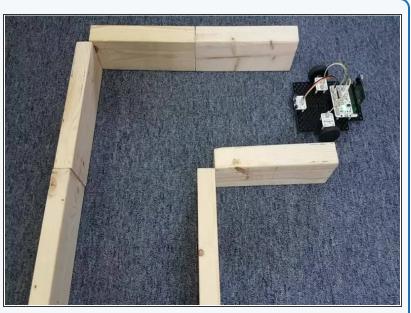


- Let's write a simple program to make the robot navigate the **right turn.** Your program should:
 - Drive forwards
 - If the switch is pressed, reverse slightly, then turn right 90 degrees
 - Drive forwards again
- You should just need **1** IF statement to complete this your code should be quite similar to the obstacle avoider in the last lesson!

Be sure to **test it properly** on your maze section until it works reliably!

(i) If you are having trouble getting your turns to be accurate, you can always try slowing down your motors.

- When your robot is able to make the right turn correctly, try running it through the maze section from the other direction, to try a left turn.
- Did it behave how you expected?

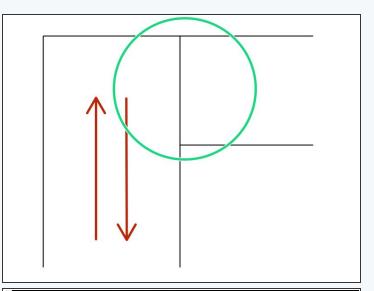

Step 4

- Your robot probably **turned right** 90 degrees, **hit** the other wall, **turned right** 90 degrees again and went **back** where it came from!
- This is no good the robot will never make it through the tunnels! **Can you think how to fix it?** Have a think then move on to the next step.

Fixing the Left Turn

Step 5

- To fix this, we need to write a program that can work out whether we need to turn left or right.
- If you think you know how to do this, great try it out! If not, here is a way that might work:
 - If the switch is pressed, always turn right 90 degrees.
 - Move forward a **small amount**, and if the switch is pressed **again**, we must be at a **left turn!**
 - Spin 180 degrees, then continue driving forwards
- Check out the video for how your robot should handle the left turn if you're still not sure!
- Here's a hint you will need to put an If statement inside another IF statement.


Step 6

Dead Ends

Challenge!

- Now our robot can handle almost anything underground, but what about a dead end?
- Add another IF statement to your program to check if the switch is being pressed after the 180 degree turn, and if it is, turn back!
- There's some example code for a program that can deal with left and right turns in the second image if you are stuck.
- Add another wall to your test maze so you can properly test your code!

Now things are getting complicated, don't forget to **comment** your code properly.

Start your code below here.

drive_motor(0,100) # Forwards

```
while True:
if pin0.read_digital()==1:
    drive_motor(0,-100) # Reverse slightly
    sleep(100)
    drive_motor(1,100) # Turn right 90 degrees
    sleep(400)
    drive_motor(0,100) # Forwards
    sleep(200)
    if pin0.read_digital()==1:
        drive_motor(0,-100) # Reverse slightly
        sleep(100)
        drive_motor(1,100) # Spin 180 degrees
        sleep(800)
        drive_motor(0,100) # Fowards
```

Test the Full Maze!

- Time for a real test of your program!
- As a group, combine all the small maze pieces into one large maze, with at least one left turn, one right turn and a dead end. The bigger the better!
- **Time** each other's robots and see who can get through the maze the fastest.
- You will probably want to do some test runs first so you can adjust your program so it is as fast as possible.

Extension

Step 8

Step 7

Two Switch Sensors

- For the super advanced explorers, you could try using two switch modules like in the obstacle avoidance challenge, to see if you can do the maze any faster.
- You could also experiment with the **positioning** of the wheels, switches and trackball on your robot to see which positions work the best.
- In short, try experimenting with anything you think might improve the performance of you robot!

Super Extension Challenge!