techcamp

.org.uk

B - Broken Track

There's a gap in the track! We need to make our robot even more intelligent so it won't get stuck,
and can find the track again on its own.

| L]
|]|

This document was generated on 2021-12-21 07:47:13 AM (MST).

© 2021 courses.techcamp.org.uk/ Page 1 of 8

INTRODUCTION

There's a gap in the track! We need to make our robot even more intelligent so it won't get stuck, and can find the track
again on its own.

N
Assemble the Robot
® We only need the line follower module for this
lesson - assemble your robot like the picture!
U J

This document was generated on 2021-12-21 07:47:13 AM (MST).

© 2021 courses.techcamp.org.uk/ Page 2 of 8

Delays Cause Problems P

pl];(p[1+p[31)/2;p(]=(§[]+pi 1/2;p[8]1=p[5]-p[3]
while(p@()>p[7]and p1()>p[]):d(j if po()<p[7] or
@ Dealing with breaks in the track is difficult. We can't def digital read_line(s): return 1 if (s==0 and pe()>p[

: - . def 1 d_1i : v=p@()if s==0 else p1();return
just drive forward for 1 second using a sleep, as we sle analeg yEad L gs(e)a WApaLy Sl arekur
won't be able to sense the line at the same time.

calibrate_line_sensors()

@ Build the test program in the picture.

drive_motor(@,)
i i sleep()
® It would be great if th|§ program drove forwards and if digital read_line(2)==0 or digital_read_line(1)==0:
then stopped on the line - try it, see what happens. drive_motor(8,8)

@ It only works if one of the sensors is exactly on the
line after 1 second - this is not very likely!

@ This is because the sleep stops anything else from
happening whilst it is waiting for 1 second - so all
the time we are driving forwards, we can't check the
sensors - that's no good!

@ Things that stop other things from happening are
called 'blocking’ - they block everything else until
they are finished.

Delay Differently 11 [elas aigiiareéwliﬁe‘(s: rw‘eur“n -i#’ (s: an pO(i.»p

def analog_read_line(s): v=p@()if s==0 else pl();return

® We need to come up with a way to wait whilst still
being able to do other things.

calibrate_line_sensors()

® Replace the sleep(1000) line with a for loop that runs

. . . L. . drive_motor(@,)
10 times, with a sleep(100) line inside it.
for i in range(9,10):
® This code will wait for 1 second, just like before. sleep(10@)

if digital read_line(©)==0 or digital _read_line(1)==0:
drive_motor(0,0)

This document was generated on 2021-12-21 07:47:13 AM (MST).

© 2021 courses.techcamp.org.uk/ Page 3 of 8

Using a Counter

® We now need to add a variable that acts as a
counter - it will count how many milliseconds of
delay have happened.

@ Above the for loop, make a new variable called t
and set it equal to 0.

@ Inside the loop, increase t by 100

® t will now count the number of milliseconds of wait
time!

If you're feeling clever, you can change the for loop
to do this without even creating another variable, and
using i to track the amount of time instead......

while(p@()>p[7]and p1l()>p[6]):d(0 if pe()<p[7] or p
def digital_read_line(s): return 1 if (s==0 and pe()>p[
def analog_read_line(s): v=p@()if s==0 else pl();return

calibrate_line_sensors()
drive_motor(@,)

t=
for i in ra

sleep(

t=t+
if digital_read_line(©)==0 or digital _read_line(1)==0:
drive_motor(©,0)

Counter in the loop

® Now let's use the counter to control the number of
times the loop runs.

@ Instead of the for loop, replace it with a while loop.
@ For the condition, run the loop while t<1000.

@® We can now change this number to decide how long
the wait is! For example, changing to t<2000 would
run the loop for a total of 2000 milliseconds (2
seconds).

while(p@()> > :
def digital read_line(s): return
def analog_read_line(s): v=p@()if s==

< p or p
and pe()>p[

calibrate_line_sensors()

drive_motor (@,)
e dgf;;5’;§§;;9

while t<
sleep()
t=t+

if digital_read_line(©)==
drive_motor(©,0)

or digital_read_line(1)==0:

\ J
This document was generated on 2021-12-21 07:47:13 AM (MST).
© 2021 courses.techcamp.org.uk/ Page 4 of 8

Sensors in the Loop while(po()>p[7]and p1()>p[6]):d(® if pe()<p[/] or pl

def digital_read_line(s): return if (s and pe()>p[

def analog_read_line(s): v=p@()if s==0 else pl1();return
® What's the point of making a really complicated
delay?
calibrate_line_sensors()
® Anything we put in the loop will be run as the delay
is happening - so we can check the sensors whilst drive_motor(©,100)
we are driving forwards! P
while t< s
® Move the IF statement checking the sensors inside sleep(100)
the loop. s

® You will need to add in a sleep(2000) line after the if digital_read_line(9)==0 or digital_read_line(1)==0:
calibration - the robot always finishes on the line after HREVE Mekok e
calibration, so otherwise we won't be able to test our
code.

@ Try it out - the robot should now drive forward and
stop exactly on the line, every time!

® Experiment with changing the length of the wait
loop, so the robot can start further away from the
line and still reach it.

d=drive_motor;d

iti global p;p= 8_ 39y] 2,9, 9,1, 5 e
Stop Waiting Sooner while(running_time()-p[2]<4000) :v=[p0(),p1()1;P[5]-v[1]if v[1]>p[5]
pl[rgp[(gwE %) ;p[d:(p[)[]%fsg 1/ 5PE)]=;[J[1]-;J[]EF))[%#})[%-p[]
' . while(pe()>p and pl()>p H if pe()<p or pl()<p else 3,
® We aCtua”y don't need the IF statement in the |00p - B of digital read_line(s): return 1 if and pe()>p[7])or(s and p1()

we can merge the conditions of the |00p and the IF def analog_read_line(s): v=p@()if s==8 else pl();return if(v>p[4]an
statement together!

calibrate_line_sensors()

@ Let's think about this - we want to run the loop (and slEaplane)
the the motors) if: drive_motor(,160)

@ <2000, AND

and digital_read_line(©)==1 and digital_read_line(1)==1:

® Sensor Ais HIGH, AND
® Sensor B is HIGH

® Luckily, we can use 2 AND operators together to do
this! Change your code to look like the picture, and
test it out.

This document was generated on 2021-12-21 07:47:13 AM (MST).

© 2021 courses.techcamp.org.uk/ Page 5 of 8

Step 8

Merge with Line
Follower

@ Let's merge our code with the 2 sensor line follower
program to deal with simple breaks in the track.

® Load up your code and add the line finder code you
just wrote to the IF statement where both sensors are
off the track (1).

@ It should look like the picture!

def digital_read_line(s): return if (s
def analog_read_line(s): v=p@()if s== H o n

calibrate_line_sensors()

def line_follower():
if digital_read_line(1)==
t=
drive_motor (2,)

drive_motor(@,0)

if digital_read_line(1)==
drive_motor(1,59)
drive_motor(2,)

if digital_read_line(1)==
drive_motor(1,-50)
drive_motor(2,58)

if digital read_line(1)==

drive_motor(@,50)

Viine_Follower()

and digital_read_line(©)

[71)er(s and pl()>p
if(v>p[4]and

and digital_read_line(®)==1:

and digital_read_line(1)

and digital_read_line(9)==0:

and digital_read_line(8)==1:

and digital read_line(0)==0:

A Few Changes

® We need to make a few changes to make our code
work with the line follower:

® Add a delay of 200 milliseconds before the while
loop (this makes sure both sensors are not on the
line)

® We only want to stop the motors if both sensors are
still off the track after the wait loop.

® Put the motor stop line in an if statement, that
checks if both sensors are still 1

After we have stopped the motors, we then want to
wait until 1 of the sensors is 0 before we continue

@® Add another while loop to do this!

calibrate_line_sensors()

def line_follower():
if digital_read/33)=
sleep(

t=

drive_motor(e,)

while t< and digital_read_line(@)=
sleep()
t=t+

if digital_read_line(@)==1 and digital_read_line(1)==1:

drive_motor(,9)

> digital_read_line(@)==1 and digital_read_line(1)==1:

if digital_read_line(1)==
drive_motor(1,52)
drive_motor(2,-59)

if digital_read_line(1)==
drive_motor(1,-50)
drive_motor(2,59)

if digital_read_line(1)==
drive_motor(2,52)

while :
line_follower()

and digital_read_line(@)==1:

and digital_read_line(©)==0:

and digital_read_line(@)==1:

and digital_read_line(@)==0:

and digital_read_line(1)==1:

\ y,
This document was generated on 2021-12-21 07:47:13 AM (MST).
© 2021 courses.techcamp.org.uk/ Page 6 of 8

Line follower with
breaks in track

® Cover a small section of straight track (about 5cm)
with a piece of paper, or white PVC tape and tape
it down to test the program.

@ You will probably need to make adjustments to

speeds and timings to make it work reliably! C ha I Ie ng e
@

® Keep experimenting until it works well.

@® Make sure the gap is on a straight section of track -
this code won't work on gaps in curves! Can you
work out why?

This document was generated on 2021-12-21 07:47:13 AM (MST).
© 2021 courses.techcamp.org.uk/ Page 7 of 8

Curved Breaks

EXtension I l I

Challenge! I] I

® Once you can cross a gap in straight track, try a gap in curved track!

@ To do this, you will need to make the robot move side to side in the wait loop, instead of just moving forwards.

® This can be done by making the robot turn to start with instead of going forwards, and then changing the
direction of turn inside the loop every so often.

@ It works best if the robot goes left and right several times , in a kind of sweeping motion.

@ You can also experiment with other types of break like in the picture - offset lines and breaks that point the robot
in the wrong direction like the middle example are particularly difficult to get right!

This document was generated on 2021-12-21 07:47:13 AM (MST).

© 2021 courses.techcamp.org.uk/ Page 8 of 8

	B - Broken Track
	INTRODUCTION
	Step 1 Assemble the Robot
	Step 2 Delays Cause Problems
	Step 3 Delay Differently
	Step 4 Using a Counter
	Step 5 Counter in the loop
	Step 6 Sensors in the Loop
	Step 7 Stop Waiting Sooner
	Step 8 Merge with Line Follower
	Step 9 A Few Changes
	Step 10 Line follower with breaks in track
	Step 11 Curved Breaks

