techcamp

.org.uk

C - Smoother Line Following

Learn about analogue inputs to make an even more sophisticated line following robot, that will
smoothly follow any path.

010110

This document was generated on 2021-12-25 08:56:20 AM (MST).

© 2021 courses.techcamp.org.uk/ Page 1 of 6



INTRODUCTION

Learn about analogue inputs to make an even more sophisticated line following robot, that will smoothly follow any path.

N
Setup Your Robot
® We just need the line sensor for now - make sure
your robot is setup like the picture.
. J

This document was generated on 2021-12-25 08:56:20 AM (MST).

© 2021 courses.techcamp.org.uk/ Page 2 of 6



Analogue and Digital

To make a smoother, better line follower, we need to use the line sensor in analogue mode.

So far, we have been using it as a digital sensor - it can only be ON or OFF (1 or 0).

Analogue inputs (and outputs) can have any value - think about the difference between a digital and an analogue

clock

A digital clock must display a whole humber of minutes

But on an analogue clock, the minute hand can be anywhere - even halfway between two minutes!

This document was generated on 2021-12-25 08:56:20 AM (MST).

© 2021

courses.techcamp.org.uk/

Page 3 of 6



Analogue Line Sensor p[61=(p[51+pP[31)/2;p[7]=(p[4]1+p[2])
while(pe()>p[7]and p1()>p[6]):d(e i
@ Build the simple test program in the picture. def digital_read_line(s): return it £
def analog read_line(s): v=p@()if s==

@® Program your robot, and keep it plugged in.

@ Try moving the robot slowly from one side of the line
to the other, whilst watching the speeds of the calibrate_line_sensors()
motors. - B

while
® See how the change gradually as you approach the left=analog_read_line(1)

line? drive_motor (@, left)

2 Analogue Sensors while(pe@()>p[7]and p1()>p[6]):d(@ i

def digital_read_line(s): return iF

® We can use this gradual change to smoothly def analog read_line(s): v=p@()if s==
change the amount the robot turns as it get further -
from the line!

® Add two new variables to the program inside the calibrate_line_sensors()
while True: loop, called | and r (left and right).

while ‘
@ Letl =the analogue value of the left sensor (1), and l=analog read line(1)
r = the analogue value of the right sensor (0). r=analog read line(9)

@ The analog_read_line function returns 100 if the
sensor is completely off the line (on white), and 0 if
the sensor is completely on the line (black).

This document was generated on 2021-12-25 08:56:20 AM (MST).

© 2021 courses.techcamp.org.uk/ Page 4 of 6



How much to turn?

@ The larger the difference between | and r, the further
the robot is from the line so the more we need to
turn.

@® For example, if both sensors are on the line, we
don't need to turn at all and | and r will have the
same value.

® Add a new variable called turn.

@ After getting the values of | and r, set turn equal to
the difference between | and r.

def digital_read_line(s): return if
def analog_read_line(s): v=p@()if s==

calibrate_line_sensors()

while
l=analog_read_line(1)
r=analog_read_line(9)

tur‘nzl—r‘(&—,:

AN
h]

Turning

® Then, add two lines of code like the picture, to set
the speeds of the motors using the turn variable.

® Do you understand how the code works? (hint: turn
is positive when we need to turn right, and
negative when we need to turn left)

calibrate_line_sensors()
while
l=analog read_line(1)

r=analog read_line(©)

turn=1-r

drive_motor(1,56+turn)
drive motor(2,50-turn)

\ y,
This document was generated on 2021-12-25 08:56:20 AM (MST).
© 2021 courses.techcamp.org.uk/ Page 5 of 6



Maximum Speed

@® You might have noticed that while the new program

is smooth, it isn't as fast as the old two sensor el calibrate_line_sensors()
digital program - it might also struggle with the '
tighter turns. El while
l=analog_read_line(1)
® To make it faster, we need to make sure 1 wheel is 2¢ r=analog read line(©)
always going 100% forwards, and then change the
speed of the other wheel only based on how large turn=1-r

turn is to follow the line.
drive_motor(1, +(turn

)
@ Change your program so it looks like the picture - 25 drive_motor(2,100-(turn*3)
this will make sure 1 wheel is always going at 100%.

)
)

® To make this work for tight turns, we need to
multiply the turn variable to it has a bigger effect.
Try it out with 3 to start with - you might need to
adjust this depending on your exact robot setup, and
how tight the turns are on the line.

@® Be sure to test it properly - try adjusting things until
your program is 100% reliable.

Step 8 \
Proportional Sparkles

@ If you're feeling really advanced, add the Sparkle
module back in and set the colours of the LEDs
proportionally based on how far away from the line

EXtension
@ Your robot can also get lost and now has no way of

finding the line again - try and add the code you C h I I

wrote previously back in so the robot can't get lost, a e n g e @

or at least stops if it loses the line completely.

This document was generated on 2021-12-25 08:56:20 AM (MST).

© 2021 courses.techcamp.org.uk/ Page 6 of 6



	C - Smoother Line Following
	INTRODUCTION
	Step 1 Setup Your Robot
	Step 2 Analogue and Digital
	Step 3 Analogue Line Sensor
	Step 4 2 Analogue Sensors
	Step 5 How much to turn?
	Step 6 Turning
	Step 7 Maximum Speed
	Step 8 Proportional Sparkles


