
1 - Spirit Level
Create a digital spirit level using LEDs and a buzzer!

This document was generated on 2021-12-30 11:41:22 PM (MST).

© 2021 courses.techcamp.org.uk/ Page 1 of 9



INTRODUCTION

Create a digital spirit level using LEDs and a buzzer!

Step 1
 Loading the MakeCode

editor

 

In your browser, go to https://makecode.microbit.org/
(https://makecode.microbit.org/) . This will load the Microsoft
MakeCode editor which we'll be using to write the
TypeScript programs for our make:bit.



Click the "New Project" button, and the editor will
open.



On the top bar, click the JavaScript button to leave
the block interface and enter the TypeScript
environment.



This document was generated on 2021-12-30 11:41:22 PM (MST).

© 2021 courses.techcamp.org.uk/ Page 2 of 9

https://makecode.microbit.org/


Step 2
 Introducing TypeScript

In previous projects, we used Python to develop our
micro:bit code. Here, we'll be using a language called
TypeScript. But what is TypeScript?



TypeScript is a language developed by Microsoft
which adds extra features to the popular language
JavaScript. If you've ever written JavaScript, the
language will look very familiar, and in fact any
JavaScript program will run in TypeScript.



TypeScript is an incredibly useful language to learn,
as it's used everywhere, from major websites to
applications such as Spotify and Discord. In fact,
TypeScript powers a significant portion of the modern
web!



Step 3
 Analysing the starting

template

Before we start developing our own TypeScript code,
let's start by analysing the starting project template.



You may recall in Python to keep your program
running forever we used a while True: infinite loop.
Here, we use something similar to define an infinite
loop, the forever function.



Effectively, the forever function lets us define the
code between the brackets that we want to run
infinitely, just like the while True: loop in Python. We
can start out by writing our code on line 2.



This document was generated on 2021-12-30 11:41:22 PM (MST).

© 2021 courses.techcamp.org.uk/ Page 3 of 9



Step 4
 Introducing

namespaces

 

The forever function belongs to the basic namespace, which groups the various features of the micro:bit into
categories. For example, to access the micro:bit's thermometer, we access the input namespace to get the
temperature function.



We use a dot between the words basic and forever to denote that the forever function belongs to the basic
namespace.



You can view all the namespaces and enclosed functions by looking on the sidebar and clicking on each category.
If you click on one of the enclosed functions it will automatically add it to your program.



This document was generated on 2021-12-30 11:41:22 PM (MST).

© 2021 courses.techcamp.org.uk/ Page 4 of 9



Step 5
 Writing our spirit level

code

To start out in TypeScript, let's write a simple
program which will use the micro:bit's accelerometer
and the LED module to work as a digital spirit level.



We start by writing our code inside the forever
function so that the program knows to loop our code
forever.



On lines 2 and 3, we define two variables, z and y,
which store the force of gravity in its respective
dimensions. We can access these by referring to the
acceleration function found in the input namespace.



Note the difference in variable definition in
TypeScript vs. Python. In TypeScript, we must use
the let command to tell the computer that we're
defining a variable.



We then use some in-built math functions to calculate
the angle that the level is pitched at on lines 5 and 6.



For those familiar with trigonometry, we use the tan
function to calculate the angle!



This document was generated on 2021-12-30 11:41:22 PM (MST).

© 2021 courses.techcamp.org.uk/ Page 5 of 9



Step 6
 Finishing the code

On line 8, we use an if...else statement to see if the
angle is 0 (i.e. flat). Notice the use of brackets to
indicate where the comparison takes place.



In TypeScript, we use the curly brackets {...} to
indicate what code belongs to what, rather than the
colon and indentation style that Python uses.



Finally we can access the digitalWritePin function in
the pins namespace to turn the led green if the
micro:bit is level, or red if it's not. Notice that the write
pin function takes two arguments, the pin number
and the value to write.



Step 7
 Here be dragons!

Before building the spirit level, it's important to
address a few other crucial elements in how
TypeScript differs from Python.



Notice how each statement ends in a semi-colon.
Whilst this isn't strictly necessary, it is considered
best practice and may avoid some weird errors!



To test whether something is equal in TypeScript, we
use three = signs rather than the two in Python. To
test if something is not equal, we use !== instead of
!=. You may encounter issues if you use two!



This document was generated on 2021-12-30 11:41:22 PM (MST).

© 2021 courses.techcamp.org.uk/ Page 6 of 9



Step 8
 Set up your board

Remove any motors and the trackball on the board.

Connect the LED module to the board, connected the
red LED to P1 and the green LED to P2.



Step 9
 Install the program

Click the download button on the MakeCode page. This will download a hex file like before which you can drag to
the micro:bit.



You can also pair the micro:bit by going to settings and selecting the "Pair device" option. This will let you install to
the micro:bit straight from the MakeCode editor!



This document was generated on 2021-12-30 11:41:22 PM (MST).

© 2021 courses.techcamp.org.uk/ Page 7 of 9



Step 10
 Test the spirit level

Turn on the micro:bit from the power switch on the board and place it on a flat surface. You should see the light go
green, indicating that the surface is flat.



Now try to rotate the board. The light should go red again. If so, your spirit level works!

This document was generated on 2021-12-30 11:41:22 PM (MST).

© 2021 courses.techcamp.org.uk/ Page 8 of 9



Step 11
 Challenge: Add a

buzzer!

Many digital spirit levels have some sort of audio feedback along with the lights.

Can you add support for a buzzer to the program which turns on the buzzer when the level is flat and off when it is
not?



This document was generated on 2021-12-30 11:41:22 PM (MST).

© 2021 courses.techcamp.org.uk/ Page 9 of 9


	1 - Spirit Level
	INTRODUCTION
	Step 1 Loading the MakeCode editor
	Step 2 Introducing TypeScript
	Step 3 Analysing the starting template
	Step 4 Introducing namespaces
	Step 5 Writing our spirit level code
	Step 6 Finishing the code
	Step 7 Here be dragons!
	Step 8 Set up your board
	Step 9 Install the program
	Step 10 Test the spirit level
	Step 11 Challenge: Add a buzzer!


