
5 - Phone Control (Android)
Use your Android device and the Kitronik Move app to control your car!

This document was generated on 2021-12-30 11:41:48 PM (MST).

© 2021 courses.techcamp.org.uk/ Page 1 of 13



INTRODUCTION

Use your Android device and the Kitronik Move app to control your car!

Step 1
 Pairing your device

To control the robot using your phone, we'll be using
the micro:bit's internal bluetooth module.



Follow the video to learn how to pair your micro:bit to
your phone!



You'll also need to install this app.
(https://play.google.com/store/apps/details?

id=com.samsung.microbit)



Step 2
 Installing the Kitronik

Move app

Now that you've paired your micro:bit to your phone,
it's time to install the app which we'll be using to
control the car!



Install the Kitronik Move
(https://play.google.com/store/apps/details?

id=com.kitronik.blemove) app from Google Play.



This document was generated on 2021-12-30 11:41:48 PM (MST).

© 2021 courses.techcamp.org.uk/ Page 2 of 13

https://play.google.com/store/apps/details?id=com.samsung.microbit
https://play.google.com/store/apps/details?id=com.kitronik.blemove


Step 3
 Installing the extensions

 

Like before, we need to install an extension so that the micro:bit knows how to work with our phone.

Install the "devices" extension by clicking on it.

When you get this message, click "Remove extension(s) and add devices".

Make sure you're using the https://www.techcamp.org.uk/invent (https://www.techcamp.org.uk/invent) version of
MakeCode!



This document was generated on 2021-12-30 11:41:48 PM (MST).

© 2021 courses.techcamp.org.uk/ Page 3 of 13

https://www.techcamp.org.uk/invent


Step 4
 Planning our code

When working on larger code projects like this one,
it's always good to have a plan of what exactly your
code will do.



The Kitronik Move app has a simple game pad with a
D-Pad and 4 buttons. In our code, we want the car to
go forward as long as button 2 is held down and
backwards when 4 is held down. C and D should
make the car go left or right, but only if 2 or 4 is also
pressed down.



The app doesn't show the labels for the buttons, but
we've inserted them so you know what the micro:bit
sees.



Step 5
 Flowcharting our code

Now we know what we want our code to do, it's good
to flowchart our code so we know the exact process
to get there.



In a flowchart, a circle represents an "event" in our
code, like a button being pressed or even the
program starting, a square represents a process,
such as moving forwards, and a diamond represents
a decision, just like an if statement.



Arrows in a flowchart represent the flow of the
program between actions.



The image here is an overview of our program. Let's
take a closer look at each section.



This document was generated on 2021-12-30 11:41:48 PM (MST).

© 2021 courses.techcamp.org.uk/ Page 4 of 13



Step 6
 Handling bluetooth

It's useful to know whether our phone is actually
connected to the car or not.



We can put two event handlers in our program which
will display a check mark if bluetooth is connected, or
a cross if it is disconnected.



In TypeScript, an event handler is simply a function
to run when an event occurs.



Step 7
 Handling the forwards

and backwards buttons

If button 2 or 4 is pressed, we want to first check if
the left and right speeds are both 0 (or off). If they
are, set them both to 100% speed.



Next, just set the direction to forwards or backwards
and enable the motors.



We also need code to run if the buttons are released,
otherwise the car would go forwards or backwards
forever! Here, we have it just set everything back to
off if either button is released.



Notice the amount of shared logic between the two
events. This indicates that we'll want to use functions
in our code to avoid repeating ourselves!



This document was generated on 2021-12-30 11:41:48 PM (MST).

© 2021 courses.techcamp.org.uk/ Page 5 of 13



Step 8
 Handling the left and

right buttons

Finally, we just need to handle the left and right logic.
Luckily, this is much simpler.



All we need to do is set the left and right speeds to
go in the direction we need. This will cause the car to
go left or right.



If left or right is released, just set the direction to
straight again.



Step 9
 Main program loop

Since the rest of the code is modifying global
variables, the main program loop is fairly simple.



First, we display a "waiting for connection" symbol on
the display (we'll use a horizontal line)



Next, if the motors are enabled, just drive in the set
direction and speeds. Otherwise, loop back and wait
again.



Notice how the decision loops back on itself. This
indicates that this code will go in our basic.forever
loop!



This document was generated on 2021-12-30 11:41:48 PM (MST).

© 2021 courses.techcamp.org.uk/ Page 6 of 13



Step 10
 Writing the bluetooth

connection handlers

Now that we've planned out the program, let's
actually write it!



Let's start by writing the bluetooth connection display
handlers.



We can use the basic.showLeds function to draw out
what we want to see on the screen, and the
bluetooth.onBluetoothConnected function to display
a check when bluetooth is connected.



This document was generated on 2021-12-30 11:41:48 PM (MST).

© 2021 courses.techcamp.org.uk/ Page 7 of 13



Step 11
 Writing the helper

functions

Next, we'll define our helper functions and variables.
We define variables for the left and right motor
speeds, whether the motors are enabled, and the
current direction (forwards or backwards).



In TypeScript, functions are defined using the
function keyword, just like def in Python. Notice how
our dir parameter has a second part. This is its type,
and TypeScript needs to know this so it knows what
is being passed to the function.



You may recognise the function keyword from
previous code, such as what we define inside the
basic.forever loop. This is because when we work
with those, we actually define a function which then
gets passed to the basic.forever function. A function
without a name is called an anonymous function, and
they are incredibly useful!



You can think of the basic.forever function as taking
another function as a parameter, which it then will
call forever. A function that takes a function as an
argument is known as a higher-order function.



This document was generated on 2021-12-30 11:41:48 PM (MST).

© 2021 courses.techcamp.org.uk/ Page 8 of 13



Step 12
 Helper functions

continued

A variable type is simply a piece of information telling
the computer what kind of information the variable
holds, such as a number or string. Here, we tell the
computer that the dir parameter is a `InventMotorDir`.
If you tried to pass a string to this function, you'd get
an error!



TypeScript is smart enough to automatically
determine types on variable assignment, which is
why we can do let left = 0. Technically, the full
version of this would be let left: number = 3 though.



Notice that the logic of the go and stop functions
follow what we defined in the flowchart.



Step 13
 Writing our button

handlers

Now we can write the handlers for the buttons. We
can use the devices.onGamepadButton function,
which takes a button action and a function to call
when the event occurs.



Here, we have two handlers for the _2Down and
_4Down events to go forwards and backwards
respectively.



We also have two handlers for CDown and DDown
to set the left and right speeds to make the robot
turn.



This document was generated on 2021-12-30 11:41:48 PM (MST).

© 2021 courses.techcamp.org.uk/ Page 9 of 13



Step 14
 Finishing the handlers

Finally, we add code for the button up events (when
the button is released), so that the car can reset
itself.



Step 15
 Finishing our code

To finish off our program, we just tell the motors to
turn on if they're enabled, just like in the flowchart!



Install the code to your micro:bit and get ready to
connect your phone to it.



This document was generated on 2021-12-30 11:41:48 PM (MST).

© 2021 courses.techcamp.org.uk/ Page 10 of 13



Step 16
 Connecting in app

In the Kitronik Move app, go to the "Connect to microbit" section by tapping the icon on the top left and selecting
"Connect to microbit"



Press the "Scan for micro:bit(s)" button and select your micro:bit from the list. Make sure your micro:bit is on!

This document was generated on 2021-12-30 11:41:48 PM (MST).

© 2021 courses.techcamp.org.uk/ Page 11 of 13



Step 17
 Controlling your car

Now that you're connected, we can go to the Game Pad section.

Press the bottom button to accelerate and the right button to reverse. You can use the left and right arrows to turn!

This document was generated on 2021-12-30 11:41:48 PM (MST).

© 2021 courses.techcamp.org.uk/ Page 12 of 13



Step 18
 Challenge: add more

features!

We still have a bunch of buttons that have gone unused in the app!

Can you think of new features to add? Maybe you could make the screen display a symbol with one button, or
activate a buzzer as a horn!



This document was generated on 2021-12-30 11:41:48 PM (MST).

© 2021 courses.techcamp.org.uk/ Page 13 of 13


	5 - Phone Control (Android)
	INTRODUCTION
	Step 1 Pairing your device
	Step 2 Installing the Kitronik Move app
	Step 3 Installing the extensions
	Step 4 Planning our code
	Step 5 Flowcharting our code
	Step 6 Handling bluetooth
	Step 7 Handling the forwards and backwards buttons
	Step 8 Handling the left and right buttons
	Step 9 Main program loop
	Step 10 Writing the bluetooth connection handlers
	Step 11 Writing the helper functions
	Step 12 Helper functions continued
	Step 13 Writing our button handlers
	Step 14 Finishing the handlers
	Step 15 Finishing our code
	Step 16 Connecting in app
	Step 17 Controlling your car
	Step 18 Challenge: add more features!


